Search results

Search for "rat brain nerve terminals" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[14C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na+-dependent uptake, tonic release and the extracellular level of L-[14C]glutamate in isolated rat brain nerve terminals
  • uptake and release; manipulation by an external magnetic field; D-mannose; membrane potential; nanoparticles; rat brain nerve terminals; synaptic vesicle acidification; Introduction Nanoparticles have great biotechnological potential opening a wide range of new applications. Properties of nanomaterials
  • uptake of glutamate by rat brain nerve terminals via specific high-affinity Na+-dependent plasma membrane transporters by using radiolabeled L-[14C]glutamate; (2) the membrane potential (Em) of the plasma membrane of nerve terminals by using potential sensitive fluorescent dye rhodamine 6G; and (3) the
PDF
Album
Full Research Paper
Published 04 Jun 2014
Other Beilstein-Institut Open Science Activities